

MEDNARODNA PODIPLOMSKA ŠOLA INTERNATIONAI JOŽEFA STEFANA

JOŽEF STEFAN **POSTGRADUATE SCHOO**

Building thick spinel iron oxide layer onto the hexaferrite core nanoparticles using multiple co-precipitation of iron ions

Blaž Belec^{1,2}, Darko Makovec^{1,2}

¹ Department for Material Synthesis – K8, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenija ² Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenija blaz.belec@ijs.si *supervisor prof.dr. Darko Makovec

Introduction

- Composite nanoparticles: different functional materials combined in the single nanoparticle.
- \diamond Coupling between the different materials \rightarrow new chemical and physical properties.
- ✤ Bi-magnetic materials consist of two different magnetic materials.
- \diamond Majority of bi-magnetic nanoparticles posses core/shell structure \rightarrow strong coupling effect due to large contact area between the materials
- Thickness of the shell can influence on the magnetic properties of the composite nanoparticles

SYNTHESIS OF THE CORE/SHELL NANOPARTICLES

- \bullet high temperatures (> 200 °C).
- \diamond toxic and expensive reactants.

ALTERNATIVE

- Low temperature synthesis of the magnetic spinel iron oxide (maghemite γ - Fe_2O_3) shell/layer deposited onto the hexaferrite core nanoparticles.
- Method based on the co-precipitation of Fe^{3+}/Fe^{2+} ions and heterogeneous nucleation of the product onto the core nanoparticles [1,2].

Maximum layer thickness: 2 nm

- ✤ Investigation of the synthesis procedure aiming to increase the maghemite layer coated onto the hexaferrite core nanoparticles.
- ★ METHOD: two-step co-precipitation process of the Fe³⁺/Fe²⁺ ions in colloidal suspension of the core nanoparticles [2].

PROBLEMS

Agglomeration of the composite nanoparticles in the second step.

Decreasing of the surfce area available for the growth of the maghemite layer Agglomeration could promote formation of the homogeneously-nucleated maghemite nanoparticles.

- is possible to increase the thickness of the maghemite layer.
- Further optimization of the synthesis in needed to obtain the homogeneous product, containing only the composite nanoparticles

[2] Primc, D., B. Belec, and D. Makovec; Synthesis of composite nanoparticles using co-precipitation of a

magnetic iron-oxide shell onto core nanoparticles. J. Nanopart. Res. (18:64): p. 1-13 (2016).

Acknowledgment Suport of the Ministry of the Higher Education, Science and Technology of the Republic Slovenia (PR-05558) Nanocenter for the use of the equipment.