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Abstract. In this paper, we present an ensemble learning method for modeling 

dynamic systems. The method is a combination of the bagging approach to 

ensemble learning and the approach of inductive process modeling of dynamic 

systems. We illustrate the use of the proposed method on the task of modeling 

phytoplankton growth in Lake Bled. 

 

Keywords: dynamic systems, dynamic modeling, equation discovery 

ensembles, bagging, aquatic ecosystems   

 

 

1 Introduction 

Experts construct mathematical models to describe and predict the behavior of 

dynamic systems under various conditions. Such models are often formulated as 

ordinary differential equations (ODEs), which describe the change of the state of the 

system over time. Constructing a model is a cascade process using knowledge and 

measured data about the observed system and integrating these together with the 

laws of nature into an understandable pattern. Two major paradigms for 

constructing models of dynamic systems exist: (1) theoretical (knowledge-driven) 

and (2) empirical (data-driven) modeling. In the first approach, domain experts 

derive a mathematical (ODE) model structure of a system, the parameters of which 

are calibrated using the measured data. The second approach uses the measured data 

to search for the best combination of model structure and parameters which most 

adequately fits the task. This paradigm is used by machine learning approaches to 

modeling dynamic systems. 
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Within the area of computational scientific discovery, equation discovery systems [1] 

have emerged that use observation data to determine both the model structure and 

parameter values. The state-of-the-art equation discovery techniques [6] integrate 

both the theoretical and the empirical approaches to modeling dynamic systems. 

They use process-based domain knowledge, which describes the entities and 

processes that may occur in the particular system. The ability to use such knowledge 

has proven to be the key factor for the success of such systems. 

Another machine learning paradigm that we draw upon is the paradigm of ensemble 

learning. In machine learning, ensemble learning methods [3] build combinations of 

multiple predictive models (ensembles) to maximize the predictive performance of 

the system. An ensemble learning method is a supervised learning technique which 

combines several base models and improves the overall predictive outcome 

representing a single model and minimizes the over-fitting of the data. Ensembles 

are employed mostly in the context of solving classification and regression tasks. In 

this paper, we focus on adapting them to the task of modeling dynamic systems. To 

the best of our knowledge ensembles of dynamic system models have not yet been 

considered in the machine learning community and addressed in this context.  

 

We adapt the traditional approach to ensemble learning, i.e. bootstrap aggregation 

[4], to solve the task of learning ensembles of dynamic models from observation 

data. We also aim to evaluate the performance of this kind of ensembles of ODE 

models in comparison to “classical” individual ODE models. The individual models 

and the components of the ensembles derived with the process-based modeling 

automated approach. The remainder of this paper is organized as follows. Section 2 

describes the bootstrap aggregation ensemble learning algorithm and its adaptation 

to the context of building ensemble models of dynamic systems. Section 3 gives an 

introduction to automated modeling of dynamic systems, focusing on inductive 

process modeling and recent contribution in this area, i.e., the ProBMoT system. 

Section 4 describes the experimental setup and discusses the results of the 

experimental evaluation.  For the experimental evaluation, a case study from the 

domain of modeling aquatic ecosystems domain is considered, where the aim is 

modeling phytoplankton concentration in Lake Bled, Slovenia. Finally, Section 5 

summarizes the conclusions of this paper.   



2 Bagging of ODE models 

Several practical and theoretical studies clearly state that an ensemble of models 

gives better performance than the best single model [2].  While ensembles of models 

for other machine learning tasks are widely used [3], learning ensembles of ODE 

models has not been considered. So far several approaches can be considered to 

address this challenge, using state-of–the-art techniques for learning different models 

from different data samples. For example, such approach considers using contiguous 

sections of the observed data with randomly selected starting points and duration. 

Adapting existing sampling methods requires more care and it is discussed below. 

 

BAGGING (Bootstrap aggregation) [4] developed by Breiman et.al is one of the first 

and simplest ensemble learning techniques. This technique uses bootstrap sampling.  

Data instances are sampled uniformly with-replacements to obtain bootstrap 

replicates of the training data. Each base model is learned from one bootstrap 

replicate. The models are combined afterwards by averaging the output (regression) 

or by voting (classification). This method successfully overcomes the over-fitting 

problem, but is not useful for linear models or in general with base models that only 

changes a little for small changes in the training data. Bagging has no memory, and 

can be parallelized to handle different replicates on different CPUs, which 

performance-wise is very useful [11].  

 

Unlike the traditional methods for data sampling, where part of the data is used for 

training the different models, which are combined into an ensemble afterwards; here 

we consider time point error weighting as a method for sampling. The classical 

approach of generating bootstrap samples for a building ensemble models for 

common classification task, includes generating samples from random data instances 

in the training set. By uniformly sampling with replacements, it is very likely that 

some of the instances will repeat, and there of generating m different training sets 

with size same as the original training set. Furthermore, every sample is used in the 

learning algorithm, thereof learning m different model classifiers which will 

participate in the ensemble. 

 

On the other hand, our approach differs in the sampling process from the classical 

approach. Mainly, for performing bagging, we choose uniformly random time points 



from the time series, and by assigning weights to each of them we are adapting the 

technique of generating bootstrap replicas in the context of time-series. The values 

in the weighting set vary in the interval from 0 to any positive integer, as long as the 

sum of the values in the set normalizes to the size of the dataset. By using this 

technique we can emphasize different time-points, thus replicating the effects of 

bootstrap replicas. In the learning phase this technique is used along with a particular 

objective function Weighted Root Mean Squared Error (WRMSE): 
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, where 
t

y and 
t

ŷ denote the observed and simulated values of the system variables, 

n  denotes number of time-points in the observed data, 
t

w denote the weight at 

time point t . More precisely, penalizing (encouraging) different time points from 

each bootstrap replica. 
 

3 Inductive Process Modeling & ProBMoT 

Equation discovery is a machine learning sub-field, which by using observations, 

aims to determine the scientific laws that govern the dynamics of a given system and 

induce them in form of equations. Moreover, Inductive Process Modeling (IPM) [5] 

is an equation discovery approach, which takes into consideration the domain-

knowledge along to the observations, and thus producing an explanatory process-

based model. These models consist of two basic components: entities and processes. 

The entities represent the state/subject of the system, whereas the processes 

represent the interaction between the entities thus modeling the system dynamics.  

 

From the mathematical point of view, the entities represent the variables involved in 

an interaction represented by the processes, which results in a set of differential and 

algebraic equations. This set of equations is the model of the dynamic system. The 

domain-knowledge is embodied in a form of a library of generic entities and generic 

processes that represent vague concepts of the particular domain. A search is 

performed through all possible model variants described in the library, resulting in a 

set of candidate models. Each candidate model is then used in the process of 

estimating parameter values. In this step, each of the candidate models is simulated 



with a set of parameter estimates. The set for which the simulated trajectory is most 

adequate to the observed data is chosen to be the model parameters. Each of the 

models is sorted by their estimation function, i.e. sum of squared errors (SSE), and 

the model with the minimal error/best fit is chosen as an output of the algorithm.  

 

ProBMoT [6] is software tool for complete modeling, parameter estimation and 

simulation of process-based models. ProBMoT follows the basic IPM paradigm and 

employs domain-specific modeling knowledge formulated in a library.  Overlooking 

the definition of specific model structures, conceptual models are formulated from 

these templates, representing an abstraction of a whole class of models. Significantly, 

the main feature of the ProbMoT is the use of more specific constraints and rules 

which gives the ability of constructing more feasible models by allowing another 

(higher) level of conceptualization of the domain knowledge. The conceptual 

models are significant due to their transparency to the domain experts and the 

ubiquity among domains. Generating conceptual models, represents a task which 

involves spatial segregation of a system into a variety of discrete fragments (layers) 

with a different role in the system, as well as aggregation or differentiation among 

layer These models define the system as set of components related between them, 

where each connection represents rule or an exchange of information, giving more 

logical representation of the modeled system. Using this approach, candidate models 

are created by applying all possible substitution rules that will represent descendant 

functional processes from the lowest level of the hierarchy. 

 

The parameter estimation process is based on meta-heuristic optimization 

framework jMetal 4.3. [7] that implements a number of global optimization 

algorithms [8], this is to, avoid the fast convergence to a local-optimum when using 

local optimization algorithms . For simulating the candidate ODE models, 

ProBMoT employs the CVODE solver from SUNDIALS [9]. 

 

Basically, the process of parameter estimation resembles the one in IPM and follows 

the least-square approach for parameter identification, and tends to optimize a 

variety of quantitative objective functions. The most competitive advantage of the 

ProBMoT is the implementation of custom quantitative objective functions such as 

sum of squared errors (SSE), mean squared error (MSE), root mean squared error 



(RMSE) and weighted RMSE (WRMSE) used for generating ensembles. Moreover 

this process has the ability to adapt to scenarios when models should are fitted on 

multiple observation datasets.  This means, every chosen set of parameter estimates 

most sufficiently corresponds to every of the observation datasets. This process can 

be considered as a multi-objective optimization problem, but for most cases we 

translate it into a single-objective. The parameter set to be fitted can also include the 

initial values of the system.  

 

In order to adequately meet the purpose of learning ensemble models of ODEs 

additional modifications of the ProBMoT were made. Basically, by tempering with 

the learning data, ProBMoT is able to generate diverse sets of output models which 

are considered as the members of the ensembles. Each of the models is fitted using 

the WRMSE function during the learning phase. The simulations of the member 

models are then combined into one by techniques such as averaging or weighted 

median, which represents the output of the ensemble model. The output model is 

again evaluated with the RMSE error function, thus providing a comparable measure 

of the performance of the ensemble to the single models in the evaluation process. 

 

4 Experimental Evaluation 

In this paper we address the task of learning ensemble models of nonlinear dynamic 

systems in the domain of aquatic ecosystems. More precisely, our case study is 

modeling the food-web dynamics of Lake Bled in Slovenia. The model includes 

three ecological variables represented as ordinary differential equations, i.e. 

phytoplankton concentration, dissolved phosphorus and zooplankton concentration. 

According to Atanasova et. al. [10] the dynamics of this ecosystem are severely 

complex, thus modeling this kind of system and obtaining acceptable results has 

proven to be a challenging task.  

To completely reveal the effects of ensembles of ODE models and additionally to 

minimize the complexity of the modeled system, we focus on modeling just 

phytoplankton concentration, whereas the other two variables are assumed to be 

exogenous.   

 

 



4.1 Datasets 

The datasets used for these experiments were obtained from the Slovenian 

Environment Agency. The measurements consist of physical, chemical and 

biological data for the years from 1996-2002. All data was depth-averaged for the 

upper ten meters of the lake. Measurements where performed with a monthly 

frequency, and interpolated with cubic spline algorithm, thus obtaining supposable 

daily measurements. Each of the datasets consists of around 300 time points. For 

our experiment we used the datasets 1996-2001 for training the models and the 2002 

dataset for evaluation. 

 

4.2 Experimental setup 

Using the process-based modeling formalism of ProBMoT we define a specific 

library describing the entities and processes involved in the dynamics of 

phytoplankton concentration variance. The library used is deduced from the 

complete library of aquatic ecosystem presented in [10], resulting in total of 128 

candidate models. For the parameter estimation procedure we used Differential 

Evolution with rand/1/bin strategy, 1000 evaluations over a population space of 50 

individuals. Our problem stated 20 parameters and 1 initial value eligible for 

estimation. We perform two experiments. In the first, we train single and use this as 

a baseline. In the second, we train an ensemble using the proposed bagging method 

with ten replicas and averaged output. 

To evaluate the performance of the ensembles for this experiment we used the 

following setup, similar to the learning curve analysis, used in machine learning. At 

each iteration, we train a model on a combination of train data sets corresponding to 

measurements in the period from 1996-2001. The train model is then evaluated on a 

single data set corresponding to the 2002 measurements. In the first iteration, we use 

2001 dataset for training. In each consequent iteration, we add one more preceding 

year to the combination of data sets used in the previous iteration (see the first 

column of Table 1). The performance of the models was evaluated using RMSE 

qualitative comparison. 

 

 



4.3 Results 

Table 1 summarizes the RMSE values for both the single model and ensemble 

model evaluation. As is stated before, several learning iterations were used for 

obtaining the Learning Curve (Figure1), each of them on a different subset of the 

training set. The results show the evaluation from the best models obtained. Mainly, 

presented here are the predictions from the best models in each iteration of the 

single model scenario, respectively only best models were considered in the process 

of generating the ensemble output. The ensemble output is generated, by averaging 

the predictions of each of the ten bootstrap replicas. 

 

Table 1. Comparison of the test errors of a single model and an ensemble model 

obtained with bagging ten models 

Train datasets (year) Test dataset (year) Single model Ensemble Bagging/10/Average  

'01 2002 1.252 2.359 

'00,'01 2002 0.951 0.977 

'99,'00,'01 2002 1.618 1.510 

'98,'99,'00,'01 2002 1.624 1.536 

'97,'98,'99, '00,'01 2002 1.672 1.635 

'96,'97,'98,'99,'00,'01 2002 1.695 1.677 

 

 

Figure 1. Learning Curve - Test errors of a single model and a bagged ensemble of 

ten models 



4.4 Discussion  

The results of the experiments show that the ensemble model performs slightly 

better on the given test data set than the single model. This slight increase in 

predictive performance comes at the cost of substantial increase in computational 

complexity. 

 

This imposes two possible directions for improving the ensemble approach. We can 

overcome the high computational complexity of the ensemble approach by 

developing a parallel implementation which will bring the time required to build the 

ensemble close to the time required to build a single model. Second, we consider 

focusing on improving the ensemble model accuracy. According to Kunceva et.al 

[12], model diversity can be a key-factor of the performance of the ensembles.  

Having this in mind, we will consider a different technique for sampling the training 

data. Instead of selecting random time points, we can select random time windows 

consisting of several contiguous time points. This sampling approach will preserve 

the dynamics present in the input data which is lost when sampling with random 

time points.  

 

The shape of the learning curve can be explained by the fact that the complexity of 

the problems by year varies, i.e., the observation data sets are of different lengths 

and the dynamics of the modeled state differs from year to year. An interesting 

phenomenon that can be spotted from this experimental setup, is adding additional 

training data beyond the second year does not improve the predictive performance. 

Adding just one preceding year is sufficient for improving the performance of both 

the ensemble model and the single model on this particular case study.  

 

These results uncover important characteristics of the ensembles approach. 

Moreover, they clearly point to important directions for future improvement of the 

performance of this methodology. 

 

 

 

 



5 Concluding remarks and Further work 

We address the task of learning ensembles of ordinary differential equation models 

of aquatic ecosystem dynamics. To this end, we extend the state-of-the art approach 

for inductive process modeling. In particular, we adapted the ProBMoT, tool for 

automated process-based modeling, to the ability for generating diverse set of ODE 

models and their combination to an ensemble model. Additionally, we added the 

ability of leaning ODE models with custom designed objective functions and 

optimization techniques. These modifications are used to properly generate 

ensembles of dynamic models and evaluate their performance. 

 

The case study considered is a model of phytoplankton growth in the Lake Bled in 

Slovenia, a complex nonlinear dynamic process part of the food-web dynamics of 

the lake. Our concern was generating an ensemble of diverse ODE models with the 

adapted bagging technique. The model considers one ecological variable from 

multiple observation data sets. Having this in mind, we considered a learning curve 

evaluation scenario. In summary, the results of our study show that ensemble 

models slightly improve the overall predictive performance. 

  

The following possible directions for further work have been identified. First, the 

development of a methodology for increasing the diversity of the generated models 

by investigating different techniques for sampling the training set. Second, studying 

the model selection methods as a possible direction for improving the performance 

of the ensembles. In addition, experiments on other ecological domains can be 

performed, thus reaffirming the conclusions drawn in this paper. Moreover, adapting 

other state-of-the-art ensemble techniques in the context of ODE models, such as 

boosting, are to be investigated. Finally, we intent to examine domains other than 

ecological, thus extend the generality of our approach. 
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For wider interest 

“A model of a system is a tool used to answer questions about the real systems 

without having to do an experiment” – Lennart Ljung 

Engineers and mathematicians construct mathematical model to describe and predict 

the behavior of real dynamic systems under various conditions. These kinds of 

models normally are formulated with ordinary differential equations (ODEs), which 

represent a change of the state of the system over time. This process can either be 

theoretical or empirical. In the theoretical approach, experts use their knowledge of 

the domain to derive a mathematical equation of some process in the nature. On the 

other hand, the empirical paradigm uses measured data and tries to find the model 

that best fits the observed data in a trial and error process.  This paradigm has been 

recently used to develop machine learning approaches to constructing ODE models 

from observed data. The state-of-the-art approaches have emerged that combine 

both the domain-knowledge and measured data to identify both the model structure 

and the values of the models parameters. 

Our research is concerned with extending the existing machine leaning paradigms of 

automated modeling towards learning ensembles of ODE models.   Our primary 

objective is adapting the existing and developing new techniques for combing ODE 

models, thus improving the descriptive and predictive performance of nonlinear and 

chaotic dynamic systems.  


