The effect of silica sol infiltration on the properties of dental 3Y-TZP ceramics # Anastasia Samodurova Study programme: Nanosciences and Nanotechnologies, Jožef Stefan International Postgraduate School Supervisor: prof. dr. Tomaž Kosmač Jožef Stefan Institute, Jamova 39, 1000 Ljubljana ## **Dental zirconia** ### Early 1990s - Orthodontic brackets - Root posts for anterior teeth # Nowadays - Fixed partial dentures - **Implants** # Why zirconia? - High strength and fracture toughness - Aesthetics - Biocompatibility # **Problems:** - Porcelain chipping - Low temperature degradation (LTD), i.e. ageing # Aim the ageing resistance of Y-TZP by enhance infiltration with silica sol without decreasing mechanical properties ### **Materials and methods** #### Infiltration with silica sol Infiltration with silica sol, synthesized in situ by the solgel method through hydrolysis of dynasylan. Specimens were immersed into a mixture of absolute ethanol and dynasylan. The hydrolysis was carried out by dropwise adding of an aqueous ammonia (%) at room temperature. Autoclaving in water: 134°C, up to 48h Characterization XRD, TEM, SEM ## Results Fig. 1. SEM micrographs of polished and thermally etched specimens sintered at 1450 °C for 4 h. #### Relative densities, % | | TZ-PX-242A | TZ-3YB | | |-------------------------|----------------|----------------|-----------------------| | As sintered | 98.6 ± 0.3 | 96.0 ± 0.7 | As sinter | | SiO ₂ -doped | 99.2 ± 0.5 | 96.5 ± 0.4 | SiO ₂ -dop | #### Average grain sizes, µm | 3 | | TZ-PX-242A | TZ-3YB | |----|-------------------------|-----------------|-----------------| | 7 | As sintered | 0.29 ± 0.03 | 0.31 ± 0.04 | | .4 | SiO ₂ -doped | 0.28 ± 0.02 | 0.32 ± 0.04 | Fig. 2. TEM micrographs of TZ-PX-242A/SiO₂ specimen sintered at 1450 °C for 4 h showing that amorphous silica is mainly present in the grain junctions. ### **Mechanical properties** | Sample | Flexural strength, | Hardness, | Fracture | | | | |-----------------------------|--------------------|----------------------|----------------------------|--|--|--| | | MPa | H _v (GPa) | toughness, K _{IC} | | | | | | | | (MPa·m ^{1/2}) | | | | | TZ-PX-242A | 1072 ± 48 | 15.2 ± 0.5 | 4.5 ± 0.7 | | | | | TZ-PX-242A/SiO ₂ | 1150 ± 150 | 14.1 ± 0.4 | 4.2 ± 0.3 | | | | | TZ-3YB | 1051 ± 136 | 14.5 ± 0.5 | 4.4 ± 0.3 | | | | | TZ-3YB/SiO ₂ | 1076 ± 114 | 13.9 ± 0.3 | 4.3 ± 0.1 | | | | # *In-vitro* ageing behavior Fig. 4. XRD patterns obtained from a) SiO₂-TZ-PX-242A and b) SiO₂-TZ-3YB ceramic surfaces, sintered for 4 h at 1450 °C and aged in water at 134 °C for 6, 12, 24 and 48 h. #### Conclusions - Silica doped 3Y-TZP ceramics with the same grain size were prepeared by the pressureless infiltration of pre-sintered specimens with silica sol synthesized in situ by the sol-gel method - The results of TEM analysis revealed that silica was mainly present as an amorphous phase concentrated at grain junctions - The presence of silica substantially improves the LTD resistance without decreasing mechanical properties.