The effect of silica sol infiltration on the properties of dental 3Y-TZP ceramics

Anastasia Samodurova

Study programme: Nanosciences and Nanotechnologies, Jožef Stefan International Postgraduate School Supervisor: prof. dr. Tomaž Kosmač Jožef Stefan Institute, Jamova 39, 1000 Ljubljana

Dental zirconia

Early 1990s

- Orthodontic brackets
- Root posts for anterior teeth

Nowadays

- Fixed partial dentures
- **Implants**

Why zirconia?

- High strength and fracture toughness
- Aesthetics
- Biocompatibility

Problems:

- Porcelain chipping
- Low temperature degradation (LTD), i.e. ageing

Aim

the ageing resistance of Y-TZP by enhance infiltration with silica sol without decreasing mechanical properties

Materials and methods

Infiltration with silica sol

Infiltration with silica sol, synthesized in situ by the solgel method through hydrolysis of dynasylan. Specimens were immersed into a mixture of absolute ethanol and dynasylan. The hydrolysis was carried out by dropwise adding of an aqueous ammonia (%) at room temperature.

Autoclaving in water: 134°C, up to 48h Characterization XRD, TEM, SEM

Results

Fig. 1. SEM micrographs of polished and thermally etched specimens sintered at 1450 °C for 4 h.

Relative densities, %

	TZ-PX-242A	TZ-3YB	
As sintered	98.6 ± 0.3	96.0 ± 0.7	As sinter
SiO ₂ -doped	99.2 ± 0.5	96.5 ± 0.4	SiO ₂ -dop

Average grain sizes, µm

3		TZ-PX-242A	TZ-3YB
7	As sintered	0.29 ± 0.03	0.31 ± 0.04
.4	SiO ₂ -doped	0.28 ± 0.02	0.32 ± 0.04

Fig. 2. TEM micrographs of TZ-PX-242A/SiO₂ specimen sintered at 1450 °C for 4 h showing that amorphous silica is mainly present in the grain junctions.

Mechanical properties

Sample	Flexural strength,	Hardness,	Fracture			
	MPa	H _v (GPa)	toughness, K _{IC}			
			(MPa·m ^{1/2})			
TZ-PX-242A	1072 ± 48	15.2 ± 0.5	4.5 ± 0.7			
TZ-PX-242A/SiO ₂	1150 ± 150	14.1 ± 0.4	4.2 ± 0.3			
TZ-3YB	1051 ± 136	14.5 ± 0.5	4.4 ± 0.3			
TZ-3YB/SiO ₂	1076 ± 114	13.9 ± 0.3	4.3 ± 0.1			

In-vitro ageing behavior

Fig. 4. XRD patterns obtained from a) SiO₂-TZ-PX-242A and b) SiO₂-TZ-3YB ceramic surfaces, sintered for 4 h at 1450 °C and aged in water at 134 °C for 6, 12, 24 and 48 h.

Conclusions

- Silica doped 3Y-TZP ceramics with the same grain size were prepeared by the pressureless infiltration of pre-sintered specimens with silica sol synthesized in situ by the sol-gel method
- The results of TEM analysis revealed that silica was mainly present as an amorphous phase concentrated at grain junctions
- The presence of silica substantially improves the LTD resistance without decreasing mechanical properties.