

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

JOŽEF STEFAN INTERNATIONAL **POSTGRADUATE SCHOO**

Underwater electromagnetic remote sensing

Study programme: Nanosciences and Nanotechnologies Jožef Stefan International Postgraduate School

Uroš Puc¹, Andreja Abina¹, Anton Jeglič³, Pavel Cevc², Aleksander Zidanšek^{1,2} ¹ Jožef Stefan International Postgraduate School, Ljubljana, Slovenia ² Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia ³ Faculty of Electical Engineering, University of Ljubljana, Tržaška 14, Ljubljana, Slovenia

Introduction

Underwater remote sensing technology: -investigation of the underwater environment and detection of unknown objects

-Acoustic, electromagnetic and optical devices

Applications of underwater remote sensing EM methods

mapping the location of objects buried under the bottom sediments or

EM propagation in water is very different from the propagation through air:

- high permittivity
- high electrical conductivity
- **G** greater attenuation loss
- Iower propagation velocity
- **u** smaller wavelength

Experimental work and results

selected EM sensing methods

Ground penetrating radar (GPR) images structures in the ground that are related to changes in the dielectric properties

vegetation

- maritime security and safety
- harbour surveillance
- dams investigation
- oil and gas industry

Conclusions

GPR with the 50 MHz antenna capable to observe the İS subsurface below 10 m and through more than 3 m of the water layer

 more detailed structure can be obtained with a higher frequency 250 MHz antenna

CWEMS sensor is capable to image several metal objects of different sizes and shapes as well as different material composition

250 MHz antenna

Underwater environment

Continuous wave electromagnetic sensor (CWEMS) II.

The primary magnetic field produced by the transmitter is changed in such a way that a higher density of magnetic flux lines occurs due to the presence of metallic objects.

References

D. J. Daniels, Ground Penetrating Radar, 2nd ed., UK: The Institute of Electrical Engineers, 2004, pp. 1-352.

M. J. Harry, Ground Penetrating Radar: Theory and Applications, 1st ed., The Netherlands: Elsevier Science, 2009, pp. 1-176.

D. Margetis, Pulse propagation in sea water: the modulated pulse, Progress In Electromagnetics Research, vol. 26, pp. 89-110, 2000.

Annan, A. P. GPR Methods for Hydrogeological Studies, In: Hydrogeophysics, edited by. Y.Rubin and S.S. Hubbard, Springer, Netherlands, 2005, pp. 185-213.