

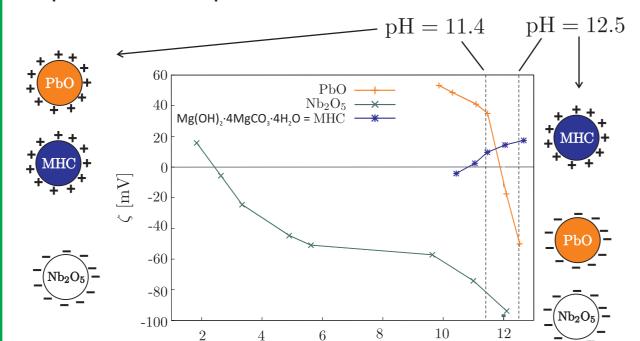
Innovative Approach to Synthesis of Pb(Mg_{1/3}Nb_{2/3})O₃ Based Materials using Colloidal Interactions

Gregor Trefalt¹, Barbara Malič¹, Bosiljka Tadić², Janez Holc¹, Danjela Kuščer¹, Marija Kosec¹

- ¹ Electronic Ceramics Department, Jožef Stefan Institute, Ljubljana, Slovenia
- ² Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia e-mail: gregor.trefalt@ijs.si

student: Gregor Trefalt, school: Jožef Stefan International Postgraduate School, programme: Nanoscience and Nanotechnologies, mentor: Prof. Dr. Marija Kosec

Scientific Part


Problem

- in the conventional solid-state synthesis of perovskite Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) based compounds lead and niobium oxide prefferentially react to the pyrochlore phases
- after the reaction in addition to the perovskite secondary pyrochlore phases are present in the product and they largley deteriorate the electrical properties of the perovskite material
- to avoid the formation of pyrochlores usually two-step solid-state synthesis is used

Use of simulations - to get an insigth in

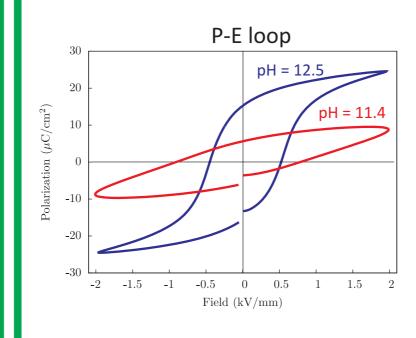
Idea

- to prepare the pyrochlore-free PMN based materials in one-step solid-state synthesis by avoiding the contacts between lead and niobium oxide particles in the reaction mixture and thus slow down the reaction to pyrochlore
- the charge of the starting material particles was measured in dependence on pH

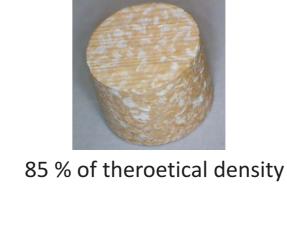
Results - Experiment $Mg(OH)_2 \cdot 4MgCO_3 \cdot 4H_2O$ Nb_2O_5 H_2O sintering @ 950 °C adjusting pH **XRD Results** pH = 12.5pH = 11.4900°C,zrak 900°C, zrak 2K/min, 5h 2K/min, 5h Perovskite + Pyrochlore Perovskite

Samples after sintering

the complex aggregation process pH = 12.5pH = 11.4PbO $\bigcirc Nb_2O_5$ $Mg(OH)_2 \cdot 4MgCO_3 \cdot 4H_2O$

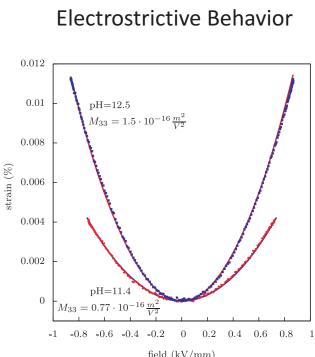

A lot of PbO - Nb₂O₅ contacts the unvanted reaction to pyrochlore is enhanhed.

Mg - compund prevents contacts between PbO and Nb₂O₅ unwanted reaction to pyrochlore


- two pH values were chosen for further investigation: 1. pH = 11.4, where PbO and Nb₂O₅ posess opposite charge and they are attracted

2. **pH = 12.5**, where PbO and Nb₂O₅ both posess negative charge and therefore they are repelled

Comparison of Ferroelectric and Piezoelectric properties of the 0.65PMN-0.35PT system prepared at pH = 11.4 and pH = 12.5


pH = 11.4

95 % of theoretical density

Comparison of Dielectric and Electrostrictive properties of the PMN system prepared at pH = 11.4 and pH = 12.5

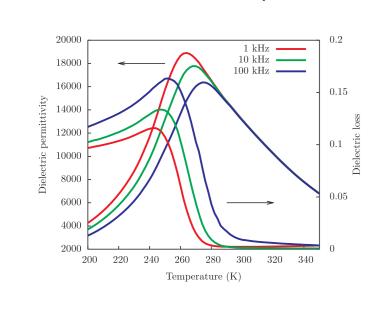
Dielectric constant vs. Temperature 10 kHz----14000 12000 0.006 10000 pH=11.4 0.004 0.002

Application of Pb(Mg_{1/3}Nb_{2/3})O₃ Based Materials - Relaxor Ferroelectrics

$Pb(Mg_{1/3}Nb_{2/3})O_3 (PMN), (1-x)Pb(Mg_{1/3}Nb_{2/3})O_3-xPbTiO_3 (PMN-PT)$

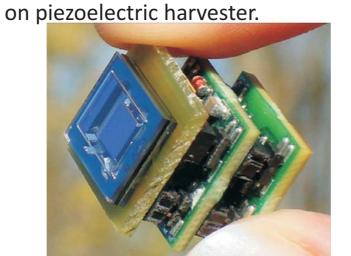
is slowed down.

Interesting Properties


- high dielectric constant ($\varepsilon_r = 5000 @RT$)
- high electrostriction coefficient (PMN) - excellent piezoelectric properties (PMN-PT: ceramics $d_{33} = 700 \text{ pC/N}$, crystal $d_{33} = 2000 \text{ pC/N}$ - good ferroelectric properties (PMN-PT)

Interesting for applications

- capacitors
- actuators
- sensors
- "energy harvesting"
- ultrasonic transducers


Important for Basic Research

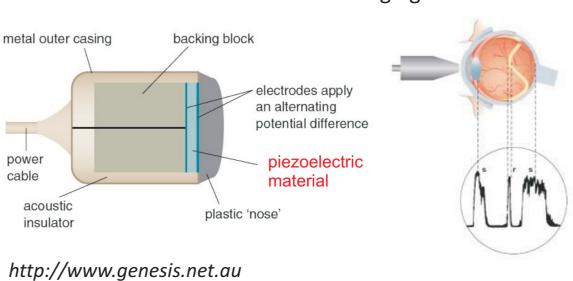
- PMN is a Model Relaxor System

Energy harvesting

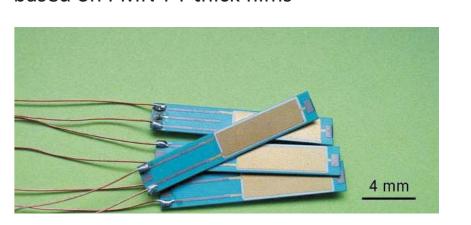
Autonomous temperature sensor based

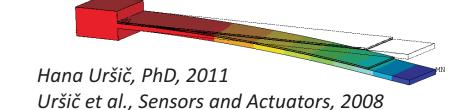
http://www.energyharvestingjournal.com

Precesion movement


Piezostage for precision movements

http://www.piezostage.net


Ultrasonic Transducers


Ultrasonic trasducers for medical imaging

Actuators

Large displacement actuators based on PMN-PT thick films

Acknowledgments

- ARRS for funding (PR-02485 and P2-105)
- Sebastjan Glinšek
- Silvo Dernovšek - Jena Cilenšek