

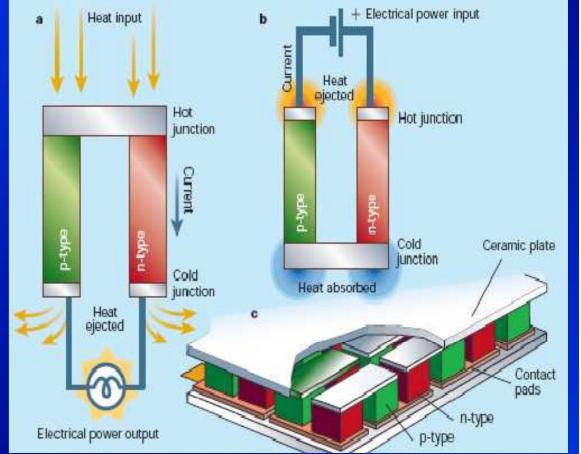
MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

JOŽEF STEFAN INTERNATIONAL POSTGRADUATE SCHOOL

Oxide thermoelectrics

Mojca Presečnik, Bcs. Geol., Graduate Engineer Study programme: Nanosciences and Nanotechnologies Jožef Stefan International Postgraduate School MENTOR: Dr. Slavko Bernik Jožef Stefan Institute, Jamova 39, Ljubljana

Thermoelectric materials DIRECTLY CONVERT HEAT INTO ELECTRICITY and vice versa.


Efficiency of thermoelectric materials

Tha efficiency of thermoelectric materials for both power generation and cooling is determined by its Thermoelectric Figure of Merit (ZT)

ZT=S²T/ρκ

Thermoelectric devices

Schematical presentation of typical thermoelectric applications (devices): a) power generation, and b) refrigeration device comprising of p-type and ntype semiconducting material. c) State of the art thermoelectric device containing several thermocouples.

Max. ZT depends on: **HIGH** Seebeck coefficient (S), temperature (T), **LOW** electrical resistivity (ρ), and **LOW** thermal conductivity (κ).

GOOD thermoelectric material

Electrons free to transport charge and heat **Phonons** disrupted from transporting heat

conflicting

properties

Phonon-Glass Electron-Crystal material (PGEC)

Oxide thermoelectrics

P-type: Na₄CoO₄, Ca₃Co₄O₉, etc. N-type: (ZnO)(In₂O₃), SrTiO₃, AI doped ZnO, etc. Advantages: - High durability against high temperature and oxidation

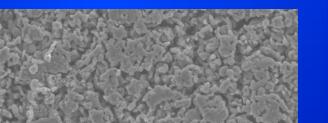
- Chemical stability
- Nontoxic
- Light weight
- Small thermal expansion

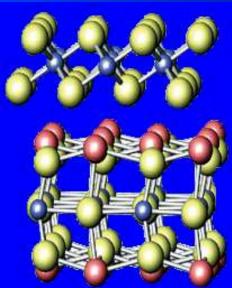
Thermoelectric Applications

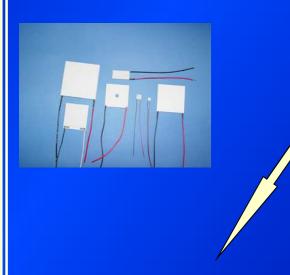
Thermoelectric cooling solutions for

State of the art thermoelectric materials

Conventional materials: Bi_2Te_3 , Sb_2Te_3 , GeTe, BiSb, PbTe alloy, Zn_3Sb_4 , etc.

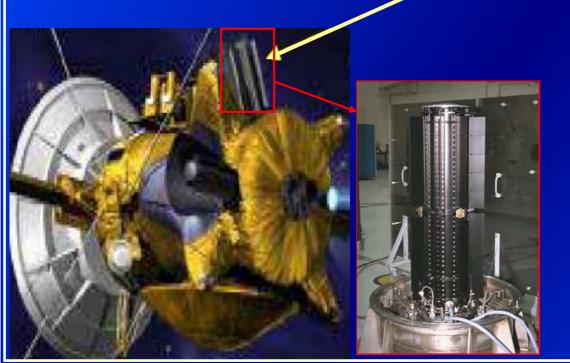

Limitations: - Poor chemical stability


- Brittle nature
- Toxic element
- Rare element
- Oxidation


Our work

 Synthesis of thermoelectric material (Na_xCoO₂, Ca₃Co₄O₉ and related systems, ceramics in ZnO -In₂O₃ system doped with various dopants)

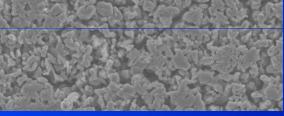
- Tailoring of thermoelectric characteristics for the best thermoelectric efficiency via:
 - structure
 - microstructure
 - phase optimization
 - with addition of various dopants


modules

electronic telecommunication enclosures, computer cabinets, mini-fridges, and in other enclosed spaces that require specialized climate control.

NASA's Cassini Probe to Saturn and Jupiter

A radioisotope thermoelectric generator



Prototype projectors ;
concepts:
compactness,
reduction of fans,

and low noise.

SEM image of the microstructure of $ZnO-In_2O_3$ phase .

Constructing a new measuring system for thermoelectric characterization

Structure of the $Ca_3Co_4O_9$ phase and SEM image of the microstructure.

