

MEDNARODNA PODIPLOMSKA ŠOLA INTERNATIONAL JOŽEFA STEFANA

JOŽEF STEFAN POSTGRADUATE SCHOOL

Barium Hexaferrite Thick Films for Microwave Absorbers and Circulators

Simona Ovtar, BSc.(Chem.) Nanosciences and Nanotechnologies, Jožef Stefan International Postgraduate school Supervisor: Assist. Prof. Dr. Darja Lisjak

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana

Introduction

- 1. Barium hexaferrite (BaHF) is a hard magnetic material with chemical formula BaFe₁₂O₁₉
- 2. BaHF has high magnetic anisotropy field (17 kOe) and an easy direction of magnetization along (00I) crystallographic axis.
- 3. Dispersed BaHF hard magnetic particles in suspension can be oriented with a gravity field or an external magnetic field.
- 4. Electrophoretic deposition (EPD) is a process where charged particles from suspension are transported to the conductive substrate, where they agglomerate and deposit.

Application

- 1. BaHF has high a magneto anisotropy field and can be used as a permanent magnet.
- 2. Thick films of BaHF can be used for absorbers at high-frequency (above 40 GHz).
- 3. Oriented films of BaHF can be used for millimetrewave non-reciprocal device, i.e. circulators, isolators or gyrators.

Experimental

- 1. Stabile magnetic suspensions from 5–20 nm and 10-250 nm BaHF plates were prepared with dodecylbenzensulphonic acid in 1-butanol.
- 2. Different positions of electrodes and external magnetic field were used.
- 3. Electric field 71 V/cm and deposition time 15 min
- 4. The films were prepared by sintering at 950 $^{\circ}$ for 10 h or 1300 for 3 h.

Results

Acknowledgement: This work was financially supported by ARRS

2. S. Ovtar, D. Lisjak, M. Drofenik, Surf. Interface Anal., in press

Reference: 1. S.Ovtar, D. Lisjak, M. Drofenik, J. Colloid Interface Sci., 2009 (337), 456