

MEDNARODNA PODIPLOMSKA ŠOLA INTERNATIONAL JOŽEFA STEFANA

JOŽEF STEFAN POSTGRADUATE SCHOOL

Ferroelectric Thin Films for Tunable Microwave Applications

Sebastjan Glinšek

Electronic Ceramics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia Jožef Stefan International Postgraduate School, program Nanosciences and Nanotechnologies Mentor: **Prof. Marija Kosec** Co-mentor: Ass. Prof. Barbara Malič

sebastjan.glinsek@ijs.si

Technology Background

- ***** Microwave technologies are the basis of modern wireless communication systems.
- **<u>Application:</u>** phase shifters in electronically steerable antennas*
- ***** Ferroelectrics are attractive for microwave devices due to:
 - strong electric field dependence of dielectric permittivity ε'
 - low microwave dielectric losses $tan\delta$
- ***** Ferroelectric thin films technology offers advantages such as:

Planar capacitor based on ferroelectric

thin film which is used as a phase

shifter.

Planar capacitor

- miniaturization of microwave components
- low operating voltages
- integration into electronic circuits

Key functional property

 $n_C = \frac{C(0)}{C(E_{\text{max}})}$

*n*_C...capacitance tunability C(0)...capacitance at zero applied electric field $C(E_{max})$...capacitance at selected electric field

Phase shifter connected to the electronic circuit and mounted into metal housing.

1D phased array based on ferroelectric phase shifters

***** Because of the geometry these antennas are convenient for aeronautical applications.

*Developed in collaboration with Thales (France), EPFL (Switzerland), and HYB (Slovenia), RETINA (EC 6FP).

Research Activities

Fast development of the communication systems stimulates the research of alternative materials. K(Ta, Nb)O₃ solid solution is a promising candidate, however, scarce literature data on preparation and dielectric properties exist.

***** Homogeneous microstructure and strongly enhanced tunability (n_c) were obtained by prolonged reflux time.

Materials composition

Chemical Solution Deposition of the Films

Films prepared from the 24 h-refluxed sols.

Composition	ε' (1 MHz)	<i>n_C</i> (1 MHz)	ε′ (~9.7 GHz)	tanδ (~9.7 GHz)
$KTa_{0.6}Nb_{0.4}O_3$	2200	2.6	675	0.38
KTa _{0.8} Nb _{0.2} O ₃	375	1.25	690	0.033
KTaO ₃	190	1.01	220	0.017

***** Dielectric properties are tuned through the Ta / Nb ratio.

Reactions were performed with different reflux times; by-products were removed by a distillation.

0.4 M sols were deposited on the alumina substrates by spin-coating.

App. 200 nm thick perovskite films were obtained after four sol depositions and heating at 900 °C for 15 min in an RTA furnace.

Research was supported by the Slovenian Research Agency (1000-07-310068, P2-0105)