MULTIOBJECTIVE GENETIC DISCOVERY OF DRIVING STRATEGIES

ERIK DOVGAN, B.Sc.

Study program: New Media and E-Science
Jožef Stefan International Postgraduate School
Advisor: Prof. Bogdan Filipič
Department of Intelligent Systems
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana
erik.dovgan@ijs.si

Problem Description

• Vehicle driving on a route from location A to location B
• Vehicle defined with:
 – engine characteristics
 – transmission characteristics
 – aerodynamic characteristics
 – braking characteristics
 – wheel characteristics
• Route consists of segments
• Segment defined with:
 – length
 – inclination
 – radius
 – velocity limit

Goal

• Find driving strategies regarding two objectives that have to be minimized:
 – traveling time
 – fuel consumption
• Find set of strategies:
 – not worse with respect to both objectives
 – heterogeneous with respect to both objectives

Representation of Driving Strategies

• Strategies as sets of rules
• Rule form:
 – IF vehicle characteristics INSIDE interval1
 AND segment characteristics INSIDE interval2
 THEN
 USE throttle percentage AND gear
 OR braking percentage

Solving the Problem

• Find strategies with a multiobjective genetic algorithm based on NSGA-II
• First, random initialization of strategies
• Then, strategy improvement step-by-step, in each step:
 – randomly select two strategies and two rules of these strategies
 – exchange information between the selected rules
 – randomly change the rules
 – delete a randomly selected rule
 – add a randomly created rule
 – evaluate the obtained strategies
 – add these strategies to the set of existing strategies
• Periodically remove the worst and too similar strategies with respect to the objectives

Solutions for a given route found in five experimental runs

Car driving interface